青岛达内it培训 > 达内新闻
达内培训:大数据底层技术有哪些?
- 发布:互联网
- 来源:互联网
- 时间:2017-11-05 09:57
1,可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了.
2,数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,达内培训:各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值.另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了.
3,预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据.
4,语义引擎
大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配.
5,数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值. 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法.
如何选择适合的数据分析工具
要明白分析什么数据,大数据要分析的数据类型主要有四大类:
交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志.
人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流.这些数据为使用文本分析功能进行分析提供了丰富的数据源泉.
移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍.这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码).
机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器.这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析.机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子.来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备).
数据分析工具达到哪些要求和目的?
能应用高级的分析算法和模型提供分析
以大数据平台为引擎,比如Hadoop或其他高性能分析系统
能够适用于多种数据源的结构化和非结构化数据
随着用于分析模型的数据的增加,能够实现扩展
分析模型可以,或者已经集成到数据可视化工具
能够和其他技术集成
更多达内培训相关资讯,请扫描下方二维码

最新开班时间
- 北京
- 上海
- 广州
- 深圳
- 南京
- 成都
- 武汉
- 西安
- 青岛
- 天津
- 杭州
- 重庆
- 哈尔滨
- 济南
- 沈阳
- 合肥
- 郑州
- 长春
- 苏州
- 长沙
- 昆明
- 太原
- 无锡
- 石家庄
- 南宁
- 佛山
- 珠海
- 宁波
- 保定
- 呼和浩特
- 洛阳
- 烟台
- 运城
- 潍坊
达内培训:大数据底层技术有哪些?
- 发布:互联网
- 来源:互联网
- 时间:2017-11-05 09:57
1,可视化分析
大数据分析的使用者有大数据分析专家,同时还有普通用户,但是他们二者对于大数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了.
2,数据挖掘算法
大数据分析的理论核心就是数据挖掘算法,达内培训:各种数据挖掘的算法基于不同的数据类型和格式才能更加科学的呈现出数据本身具备的特点,也正是因为这些被全世界统计学家所公认的各种统计方法(可以称之为真理)才能深入数据内部,挖掘出公认的价值.另外一个方面也是因为有这些数据挖掘的算法才能更快速的处理大数据,如果一个算法得花上好几年才能得出结论,那大数据的价值也就无从说起了.
3,预测性分析能力
大数据分析最终要的应用领域之一就是预测性分析,从大数据中挖掘出特点,通过科学的建立模型,之后便可以通过模型带入新的数据,从而预测未来的数据.
4,语义引擎
大数据分析广泛应用于网络数据挖掘,可从用户的搜索关键词、标签关键词、或其他输入语义,分析,判断用户需求,从而实现更好的用户体验和广告匹配.
5,数据质量和数据管理
大数据分析离不开数据质量和数据管理,高质量的数据和有效的数据管理,无论是在学术研究还是在商业应用领域,都能够保证分析结果的真实和有价值. 大数据分析的基础就是以上五个方面,当然更加深入大数据分析的话,还有很多很多更加有特点的、更加深入的、更加专业的大数据分析方法.
如何选择适合的数据分析工具
要明白分析什么数据,大数据要分析的数据类型主要有四大类:
交易数据(TRANSACTION DATA)
大数据平台能够获取时间跨度更大、更海量的结构化交易数据,这样就可以对更广泛的交易数据类型进行分析,不仅仅包括POS或电子商务购物数据,还包括行为交易数据,例如Web服务器记录的互联网点击流数据日志.
人为数据(HUMAN-GENERATED DATA)
非结构数据广泛存在于电子邮件、文档、图片、音频、视频,以及通过博客、维基,尤其是社交媒体产生的数据流.这些数据为使用文本分析功能进行分析提供了丰富的数据源泉.
移动数据(MOBILE DATA)
能够上网的智能手机和平板越来越普遍.这些移动设备上的App都能够追踪和沟通无数事件,从App内的交易数据(如搜索产品的记录事件)到个人信息资料或状态报告事件(如地点变更即报告一个新的地理编码).
机器和传感器数据(MACHINE AND SENSOR DATA)
这包括功能设备创建或生成的数据,例如智能电表、智能温度控制器、工厂机器和连接互联网的家用电器.这些设备可以配置为与互联网络中的其他节点通信,还可以自动向中央服务器传输数据,这样就可以对数据进行分析.机器和传感器数据是来自新兴的物联网(IoT)所产生的主要例子.来自物联网的数据可以用于构建分析模型,连续监测预测性行为(如当传感器值表示有问题时进行识别),提供规定的指令(如警示技术人员在真正出问题之前检查设备).
数据分析工具达到哪些要求和目的?
能应用高级的分析算法和模型提供分析
以大数据平台为引擎,比如Hadoop或其他高性能分析系统
能够适用于多种数据源的结构化和非结构化数据
随着用于分析模型的数据的增加,能够实现扩展
分析模型可以,或者已经集成到数据可视化工具
能够和其他技术集成
更多达内培训相关资讯,请扫描下方二维码

最新开班时间
- 北京
- 上海
- 广州
- 深圳
- 南京
- 成都
- 武汉
- 西安
- 青岛
- 天津
- 杭州
- 重庆
- 厦门
- 哈尔滨
- 济南
- 福州
- 沈阳
- 合肥
- 郑州
- 长春
- 苏州
- 大连
- 长沙
- 昆明
- 温州
- 太原
- 南昌
- 无锡
- 石家庄
- 南宁
- 中山
- 兰州
- 佛山
- 珠海
- 宁波
- 贵阳
- 保定
- 呼和浩特
- 东莞
- 洛阳
- 潍坊
- 烟台
- 运城