回归'AI+行业'和'行业+AI',通常来讲前者的行业纵深比较浅,后者则有巨大的行业壁垒.而行业壁垒,则是创业公司的护城河,也是抵挡BAT的关键."
再举一个典型的有巨大壁垒的"行业+AI"案例:安防.国内"安防+AI"一个重要玩家是海云数据,不同于一般AI团队对盈利的三缄其口,创始人冯一村最近在接受《AI百人》采访时,说了一句让AI圈投资人倍感欣慰的话:"在商业社会里,只有赚钱和不赚钱两种公司."很早就实现盈利的海云就是前者.而这种直白,或许源自冯一村另一句自白:"没有哪个创业公司,像我们这样去扎一个行业."
而读完这篇文章,我希望你相信一件事:在广袤AI的疆域,神仙有神仙的活法,精灵有精灵的活法,巨头们的生态博弈,并没有堵死创业者的路.
只靠技术赚钱,可能性不大.
在采访中,冯一村的一个观点令人印象深刻:科技世界,最赚钱的公司往往不是聚光灯下的公司.
譬如在大数据时代(短暂流行过后,这个词已经老了),最赚钱的不是大数据公司,而是为大数据提供底层支持的云计算公司;而在人工智能时代,真正激发的是大数据市场:"因为AI最重要的逻辑是用数据做智能化训练,所以在人工智能时代,最赚钱的公司并不是像商汤和Face++这类的公司,不是说这些公司不赚钱,他们也赚钱,但他们的盈利模式并没有呈现很清晰的特点."
事实上,在不少投资人眼中,倘若人工智能团队的自我定位永远是"技术提供商",没有给客户提供一套整体解决方案,那么它在产业链中的价值将会日趋暗淡.
原因之二,AI本身的技术门槛正在下降,就像猎豹移动傅盛所言:"深度学习的核心是数据驱动,虽然有模型调参,有自己的优势,但别人有更多的数据调参会很快拉平优势,很难真的想像一家公司通过提供技术输出就能成功.未来深度学习是基础的技术运用,很多公司都具备深度学习的研发能力."
举个例子,在过去,初创AI团队的进展受制于软件开发所花费的时间,但如今,巨头们纷纷开源了自家的深度学习框架,初创团队可以如插件一般,将人脸识别等技术嫁接到自己的系统中,让没有太多深度学习背景的开发者也能容易上手.
换句话说,单纯靠技术本身卖钱,天花板很低,也很危险.那么问题来了,AI创业路在何方?
而在这个过程中,他们应时刻谨记两点:1,面对自己时,深耕几个垂直领域,然后等待时间的回报;2,面对客户时,从技术提供者进化为一个"赋能者",授之以鱼不如授之以渔.
AI创业者深耕具体行业,还有另外一个原因:AI将在To B和To G领域率先落地.
而人工智能To B和To G落地的第一站,很多都是在传统行业,用AI进行辅助决策.拿海云举例,他们以大数据可视分析起家,现在则把AI与可视分析技术结合,然后选择四个"行业+AI"深耕:公共安全,交通运输,军民融合和智慧城市,推出与这些行业结合紧密的解决方案,提升客户的数据决策能力.
颇值一提的是,作为真正意义上的"行业观察者",他们在与行业客户多年的交流中发现,客户真正需要的不是提出的具体"技术需求",而是一整套随机应变的综合能力--别忘了,授之以鱼不如授之以渔,海云数据也因此提出了"能力服务"的概念,这一概念现阶段的标志物,就是图易AI能力服务平台.
而从智警案例中不难发现,在"行业+AI"的落地过程中,最重要的是提供一个综合解决方案.智警大脑融合了通信技术、语音识别、人脸识别等AI技术,以及海云最熟悉的大数据可视分析技术,通过将它们封装成一套解决方案,让客户瞬间完成决策能力的跃迁.
除了公共安全,图易AI能力服务平台也在完成对其他行业的改造.譬如在智慧城市建设中,它能综合处理调度整个城市的公共数据,对城市进行全局实时分析,自动调配公共资源,提升城市综合治理水平,使紧急事件响应从8分钟降低到4分钟,减少犯罪率和改善应急服务.
而在交通运输领域,脱胎于图易的"智航顺"可以为机场接入400多个数据源,集成多种类型架构的数据,并在所有机场功能中生成单一的运行健康指数实时视图,可使飞行支援准备时间缩短33%,航班延误率降低一半,提高机场资源利用率28%.
最后想说,在整个"行业+AI"市场,将自己定位于"行业专家",为客户真正赋能的AI团队,不只海云数据一家--事实上,在这片叫做人工智能的草原上,倘若将BAT比作不可一世的雄狮,那么这些团队就像一只只勤勉的穿山甲,它们力量或许显得卑微,但经过时间的陈酿,经过多年的深耕,穿山甲们也终将在各自领域"拱"出一方天地.
本篇文章是有青岛达内培训为您呈现,希望给您带来更多更好的文章