尽管取得了一些成功,但到1975年,人工智能项目基本上限于解决基本问题。事后来看,研究人员发现了两种基本问题。
有限且昂贵的计算能力
1976年,世界上快的超级计算机(它的成本超过了500万美元)只能每秒执行大约1亿次指令[34].相比之下,Moravec 1976年的研究表明,即使是人类视网膜上的边缘匹配和运动检测能力,也需要一台计算机以10倍的速度执行这样的指令。同样地,人类有大约860亿个神经元和1万亿突触;使用中提供的数据进行的基本计算表明,创建一个这种规模的感知器网络将花费1.6万亿美元,在1974年消耗整个美国的GDP.
人类思想背后的秘密
科学家不了解人类大脑的功能,尤其不知道创造力、推理和幽默背后的神经机制。对于机器学习程序究竟应该试图模仿什么,缺乏理解,这对推动人工智能理论的发展构成了重大障碍。事实上,在20世纪70年代,其他领域的科学家甚至开始质疑人工智能研究人员提出的“模仿人类大脑”的概念。例如,一些人认为,如果符号对机器没有“意义”,那么机器就不能被描述为“思考”.
最终,先驱者们发现,他们严重低估了制造一台能够赢得模仿游戏的人工智能电脑的难度。例如,1969年,Minsky和Papert出版了这本书,感知机,它们指出了Rosenblatt的一个隐藏的层感知器的严重局限性。这本书是人工智能的创始人之一,同时也证明了感知器的不足,这本书在近十年的时间里对神经网络的研究起到了严重的阻碍作用。
在接下来的几年里,其他研究人员开始分享明斯基对强大人工智能初期的怀疑。例如,在1977年的一次会议上,一位更加谨慎的约翰·麦卡锡(John McCarthy)指出,创建这样一台机器需要“概念上的突破”,因为“你想要的是1.7个爱因斯坦和0.3个曼哈顿计划,而你首先要的是爱因斯坦。”我相信这需要5到500年的时间。
20世纪50年代的大肆宣传使人们对这种大胆的高度产生了预期,当1973年的结果没有实现时,美国和英国政府撤回了对AI的研究经费。虽然日本政府在1980年暂时提供了额外的资金,但在1980年代后期,它很快就幻灭了,并再次收回投资。这个半衰期(特别是在1974年到1982年之间)通常被称为“人工智能冬季”,因为当时人工智能的研究几乎完全停止了。事实上,在这段时间和随后的几年里,“一些计算机科学家和软件工程师会避免使用人工智能这一术语,因为他们害怕被视为狂热的梦想家”.
因为你想要的是1.7个爱因斯坦和0.3个曼哈顿计划,你首先要的是爱因斯坦。我相信这需要五到五百年的时间--约翰麦卡锡,1977年。
在1974-1982年期间,普遍的态度是非常不幸的,因为在这一期间发生的少数重大进展基本上没有引起注意,并作出了重大努力来重新创造它们。以下是两项这样的进展:
第一个是反向传播技术,它通常用于有效地训练神经网络,在它们的边缘分配接近最优的权重。虽然它是由几个独立的研究人员(如Kelley, Bryson, Dreyfus, Ho)在20世纪60年代引入的,并在1970年由Linnainmaa实施,但它主要被忽略了。类似的,1974年的Werbos论文提出,这种技术可以有效地用于训练神经网络,直到1982年,当萧条期接近尾声的时候才出版。1986年,Rumelhart、Hinton和Williams重新发现了这项技术,通过展示其实际意义使之普及。
第二种是递归神经网络(RNN),它类似于Rosenblatt的感知器网络,它没有前馈,因为它允许连接同时指向输入和输出层。在1974年,这种网络被认为是一种生物学上更精确的大脑模型。遗憾的是,直到1982年Hopfield普及了RNNs之后,RNNs才被发现,并进一步完善了它们。
本篇文章是有青岛达内培训为您呈现,希望给您带来更多更好的文章